Convex Stochastic Duality and the ÔBiting LemmaÔ
نویسندگان
چکیده
The paper analyzes dynamic problems of stochastic optimization in discrete time. The problems under consideration are concerned with maximizing concave functionals on convex sets of feasible strategies (programs). Feasibility is defined in terms of linear inequality constraints in L∞ holding almost surely. The focus of the work is the existence of dual variables – stochastic Lagrange multipliers in L1 – relaxing the constraints. Such Lagrange multipliers are important in various applications. In particular, they play key roles in the analysis of stability and sensitivity of solutions to stochastic optimization problems, as well as in the design of algorithms for computing these solutions [14]. Also, such multipliers often have clear interpretations, especially in models related to economics, which sheds additional light on the issues under study [1].
منابع مشابه
Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملConvex Duality in Stochastic Optimization and Mathematical Finance
This paper proposes a general duality framework for the problem of minimizing a convex integral functional over a space of stochastic processes adapted to a given filtration. The framework unifies many well-known duality frameworks from operations research and mathematical finance. The unification allows the extension of some useful techniques from these two fields to a much wider class of prob...
متن کاملDuality and optimality conditions in stochastic optimization and mathematical finance
This article studies convex duality in stochastic optimization over finite discrete-time. The first part of the paper gives general conditions that yield explicit expressions for the dual objective in many applications in operations research and mathematical finance. The second part derives optimality conditions by combining general saddle-point conditions from convex duality with the dual repr...
متن کاملSOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING
Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...
متن کاملA Short Proof of Strassen’s Theorem Using Convex Analysis
We give a simple proof of Strassen’s theorem on stochastic dominance using linear programming duality, without requiring measure-theoretic arguments. The result extends to generalized inequalities using conic optimization duality and provides an additional, intuitive optimization formulation for stochastic dominance.
متن کامل